If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+34t=0
a = 1; b = 34; c = 0;
Δ = b2-4ac
Δ = 342-4·1·0
Δ = 1156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1156}=34$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-34}{2*1}=\frac{-68}{2} =-34 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+34}{2*1}=\frac{0}{2} =0 $
| 9x+4(4-x)=2x-20 | | 3×(x+1)^2=147 | | 12x21=252 | | 0.3x-12=-8 | | f^2-13f+12=0 | | 11v=8v+18 | | 18h-9h=18 | | 72.5=-4/8.5h76.5=8.5h | | x-x*0.16=88 | | -.5x+9=-10 | | 3x-4=2- | | 8(x-7)=15 | | -2y+4y=16 | | 3x=902x+36=180 | | Y=30x+90 | | a/16+-24=-19 | | 28.8=7.2x | | 4r-7=7r-5 | | x+1/5=-1/3. | | 5(6x4)=6x+4 | | 5k-12=14 | | 22+p=-5 | | 0.4(5x-13)+0.5x=15.2 | | 7(x-1)=-15+8x | | 25−k=20 | | -3(-2x-9)=4x+47 | | x-3/4=7/4. | | 9+h=25 | | -3(-2x9)=4x+47 | | 5k-12=1/ | | 4x-42/6=3x | | x-9.35=-0.41. |